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Noncontact Method for Sleep Stage Estimation

Takashi Watanabe and Kajiro Watanabe*, Member, IEEE

Abstract—This paper describes a novel method to estimate
sleep stage through noninvasive and unrestrained means. The
Rechtschaffen and Kales (R-K) method is a standard to estimate
sleep stage. However, it involves restraining the examinee and,
thus, induces psychological stress. Furthermore, it requires spe-
cialists with a high degree of technical expertise and the use of
an expensive polygraph. The sleep estimation method presented
here is based on the noninvasive and unrestrained pneumatic
biomeasurement method presented by the authors. Sleep stage
transition in overnight sleep and the relationship between sleep
stage and biosignals measured using the pneumatic method was
analyzed and from the results, a mathematical model of sleep was
created. Based on this model, a sleep stage estimator, including a
sleep stage classifier and observer, was designed. The sleep state
transition equation was the basis for the design of this observer,
while the observed relationships were the basis for designing a
classifier. Agreement of the estimated sleep stages with those ob-
tained using the R-K method for the non-REM stage was 82.6%,
for the REM stage was 38.3% and for Wake was 70.5%, including
disagreement. However, the new method might ultimately resul
in better estimation of sleep stage due to the fact that it does not
physically restrain the patient and does not induce psychological
stress.

Index Terms—Body movement, heartbeat, nominal scale, nonin-
vasive biomeasurement, sleep stage,

I. INTRODUCTION

A. Background of the Research

N HUMAN adults, sleep occupies almost a third of each day,
I allowing the brain to recover from fatigue and thus main-
taining health of both mind and body. Numerous people suffer
from insomnia of varying degrees; some of them do not feel
subjective symptoms, while others report serious symptoms. In-
somnia due to apnea is one type that does not result in subjec-
tive symptoms. Furthermore, even in healthy individuals, sleep
time tends to decrease due to increases in nocturnal activity [1].
Therefore, a simple, accurate and comfortable method for mon-
itoring sleep states in daily life would provide important infor-
mation for health care. At present, such a system does not exist.

Sleep stage is currently evaluated by medical specialists
using polygraph data such as electroencephalogram (EEG),
electrooculogram (EOG), and electromyogram (EMG) based
on the Rechtschaffen and Kales (R-K) method [2]. However,
this type of evaluation is subjective and the conclusions of
one medical specialist using the R-K criteria may differ from
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those of another, which is one of several drawbacks described
in the literature [3]. Furthermore, this method requires the use
of physical restraints to hold the examinee, and can lead to
psychological stress. This method is, therefore, difficult or im-
possible to apply in daily life. In addition, the use of restraints
and the resultant stress can influence the results in healthy but
nervous individuals who cannot sleep during measurement,
thus yielding inaccurate sleep stage data.

B. Research Achievements to Date

Several reports have suggested that heart rate and body move-
ment are strongly related to sleep stage [4]-[6], [16]. Based
on these suggestions, methods for estimating sleep stage based
on heart rate measured using an electrostatic charge sensor set
in the bed [7] and based on body movement measured nonin-
vasively, via signals processed by an artificial neural network
[8] have been presented. Methods for identifying Sleep/Wake
based on wrist activity [9] as well as more general activity-based
Sleep/Wake identification [10] have also been presented. These
methods attempted to directly relate sleep stage and biosignals.
Therefore, when applied to a different examinee, or to the same
examinee under different physical conditions, estimates can in-
clude systematic errors. In order to prevent such errors, it is
necessary to consider the relationships between sleep stage and
biosignals measured under more specific investigational condi-
tions.

The authors previously presented the fundamental idea of
the pneumatic method [11]-[14] and have presented a practical
system [15], which noninvasively measures heartbeat, respira-
tion, snoring, and body movement of an unrestrained examinee
in bed. A thin air-filled cushion tightly packed with urethane
sponge is laid between the bed and mattress (regardless of mat-
tress type). All human movements act on the air in the cushion
through the mattress, and the air pressure within the cushion
changes synchronously with these movements. These changes
in air pressure are detected by a supersensitive pressure sensor
and filtered in order to discriminate between the four types of
biosignals. The method and system presented in this paper is
based on the pneumatic method. Because the pneumatic method
is noninvasive and unrestrained, sleep stage may be estimated in
daily life.

Heartbeat, respiration, snoring, and body movement data
measured using the pneumatic method are all related to sleep.
Among these, we primarily use the heart rate signal, and sec-
ondarily use body movements to compensate the sleep stages
estimated from the heart rate data. The estimation algorithm
based only on heart rate can be applied to the heart rate data
measured by different heartbeat sensors and measurement
methods.

0018-9294/04520.00 © 2004 TEEE
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I1. SLEEP STAGE ESTIMATION AND DESCRIPTION OF PROBLEMS
A. Sleep Stage Estimation

Fig. 1 shows the biosignals obtained from a sleeping in-
dividual and the estimated sleep stage. A normal individual
sleeping overnight experiences the Wake stage, the REM sleep
stage and the first, second, third, and fourth non-REM stages.
In each of these stages, his heart rate changes; he breathes,
and may roll over several times, or begin snoring; and he may
experience apnea, which is a temporary cessation of breathing.
Sleep stage may remain in the same stage for a length of time,
or change from one stage to another. These transitions are
mainly stochastic processes.

In Fig. 1, the upper figure shows biosignals measured by
the pneumatic method. The method noninvasively measures
heartbeat, respiration, snoring, and body movement in an
unrestrained individual. In the figure, the change in heart rate
and body movements per minute are shown. The lower figure
shows the sleep stage as determined by the R-K method using
biosignals measured by a polygraph. For determination of
sleep stages, EEG, EMG, and EOG data are required. The
Wake stage, REM stage and four non-REM stages are logically
differentiated by occurrences of a-wave, §-wave, spindle and
K-complex wave on EEG, detection of REM on EOG and
occurrences of voltage on EMG. To measure these data, elec-
trodes must be firmly stuck to the scalp, jaw and eyelid, which
can lead to substantial physical and psychological stress.

B. Nominal, Variables, and Constants

For the sleep data shown in Fig. 1, we define the nominal
scale numeral for each sleep stage and define the constants and
variables to be cited in this paper as below.

(Nominal scale numeral of the sleep stage
categories)

Wake stage;

REM sleep stage;

Non-REM first stage;

Non-REM second stage;

Non-REM third stage;

Non-REM fourth stage.

S e ki S

(Relating to time)
time;
: total sleep time in one night;
7(=t/T): normalized time;

Lo B

tr,: time at which ith REM sleep occurs, i =

1,2, . a0,
(Relating to heart rate)

h(t): heart rate;

he(t): circadian heart rate (low-frequency range);

hy(t): ultradian heart rate (middle frequency range);

he(t): heart rate in high-frequency range;

ny(t): undefined fluctuation (noise) in heart rate with zero
mean;

et gradient of change in circadian heart rate:

Rt average overnight heart rate.

?
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Fig. 1. Sleeping conditions and measurement of data for sleep stage
estimation.
(Relating to transition of sleep stage)
s(t): transition of sleep stage throughout the night;
s1(t): transition of sleep stage in low-frequency range;
sm(1): transition of sleep stage in middle frequency range;
ny(1): undefined fluctuation (noise) in sleep stage with zero
mean;
Sa: average overnight value of sleep stage;
58 gradient of change in sleep stage in low-frequency
range;

symbol denoting estimates.

(Relating to body movement)

M(t): body movement;

M'(t):  normalized body movement;

M: average value of the body movement M (t) during
Wake stage in bed;

Max: average value of the first-fifth maximum value of
M(1);

Jias index to discriminate Wake and REM stages.

(Probability distributions of heart rates at each
sleep stage)

mi: normalized average value of heart rate in sleep stage
ili=1....,6);

o;: variance the heart rate with sleep stage i(i =
et

k: normalized sleep stage continuously estimated;

N: total frequency number of histograms;

His(k):  frequency of histogram for class k(k = 1..... N);

Si: Summation of Hi.(h) for all k;

his(k):  normalized histogram (k = 1...., N)

(Sleep stage transition equation and observer)
. (1): probability that the sleep is in & stage;

z(t): state variables vector of {;.(#)} of 6 x 1 dimension:

A: sleep stage transition matrix of 6 x 6 dimensions;

y(t): vector of assigned sleep stage by classifier, which
corresponds to z(1);

C: output matrix of sleep stage transition equation
given by 6 x 6 dimensional unit matrix

T diagonal transformation matrix for A with 6 x 6 di-
mensions;

A eigen values of matrix A(i = 1.....6);

i eigen values of full order observer (i = 1...., 6);
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C. Assumptions and Problems

For the sleep in Fig. 1, we make the following assumptions:
Al) The examinee experiences the Wake stage, the REM
sleep stage and the four Non-REM stages during
overnight sleep.

The transition from one stage to another follows a
single Markov process [17] and the heart rate frequen-
cies in each stage are normally distributed.

Sleep stages | to 6 are given by six different categories
that correspond to numbers on a linear scale based on
the relationship between sleep stage and heart rate.

Assumption Al) comes from the limitation that the sleep data
to be analyzed were obtained from examinees without any sleep
disorders. If data for sleep disorders are available, analysis can
be more general and the sleep model for any individual can
be built by extending the model for a normal sleeper. Assump-
tion A2) is cited to simplify the mathematical model for sleep.
It is unknown exactly how sleep stage changes, but the single
Markov process is widely used as an approximation [17]. As-
sumption A3) itself is restrictive because the numerals used in
a nominal scale correspond to categories rather than quantity.
However, as will be shown. the numbers used for sleep stage
are correlated with heart rate, and partially explain the actual
situation. The final results will be discussed by removing this
assumption and, thus, assumption A3) is provisional in order to
lead into the final results.

Under the assumptions above, we also consider the following
problems.

P1) Analyze sleep itself separately from sleep stage based
on the R-K method in order to develop a sleep stage
transition equation using data obtained in clinical
trials.

Elucidate the relationship between changes in sleep
stage and heart rate and body movement in overnight
sleep.

Develop a noninvasive and unrestrained sleep stage
estimation method using biosignals measured by the
pneumatic method.

Prove the validity of the method experimentally.

A2)

A3)

P2)

P3)

P4)

I1l. SLEEP DATA ACQUISITION
A. Experimental Systems

In order to analyze sleep itself and to determine useful re-
lationships between sleep stage and biosignals measured using
the pneumatic method, we acquired data from clinical trials.
Fig. 2 shows the experimental system. All of the required biosig-
nals were measured using a digital multi-purpose polygraph
(EE2514; NEC medical systems). Sleep stage was evaluated
by the international 10/20 method [5] and, thus, EEG at points
C4-Al, C3-A2 of the head, eye movement and EMG at the jaw
were measured. Electrocardiogram was measured using the I-in-
duction correction method [5]. Sampling interval of the data ac-
quisitions was 0.01 s.

Sleep stage was automatically evaluated via the computer
program “Sleep Sign versionl.05” (Kissey Comtech) based on
the R-K method and EEG, EMG and eye movement data. The
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Fig. 2. Experimental system used to acquire sleep data.

program “Sleep Sign™ is an automatic sleep classifier, but the
classifications obtained from this program and those from sev-
eral sleep specialists showed good agreement. Sampling interval
of evaluation was 1 min. Results given by the computer were
checked and corrected if an obvious error was noted by an ex-
pert. The final output signal from the system is shown in Fig. 1
(lower figure).

We simultaneously measured heartbeat, respiration, snoring,
and body movement by the pneumatic method. Between the bed
and mattress, a thin air-filled cushion (thickness, 5 mm; size, 450
mm % 90 mm) was placed. When the examinee is in bed, forces
due to movements such as the heartbeat, respiration, snoring,
and body movement act on the air in the cushion through the
mattress. The air pressure in the cushion then changes synchro-
nously with these movements. The pressure due to slight human
movement is around (.2 Pa-1.5 Pa, which corresponds to forces
of 0.05 N to 0.38 N. The changes in pressure were measured by
a supersensitive pressure sensor with a high-pass filter charac-
teristic with a gain of 5.7 mV/Pa at frequency 0.2 Hz and 18
mV/Pa at frequency range higher than 1 Hz. The frequencies
and manner in which pressure occurs due to the movements
described above are different and are, thus, discriminated by
filters with the AGC function and envelope detection circuits.
The bandwidth of the filter for respiration was 0.1-0.5 Hz, that
for heartbeat was 5-10 Hz, and that for snoring was 100-500
Hz. The body movement signal was detected by the AGC signal
for heartbeat. Heartbeat and respiration frequencies were calcu-
lated every minute. The fast Fourier tarnsform (FFT) algorithm
was employed to estimate heartbeat and respiration frequencies
(rates) for acquired data with a sampling interval of 0.1 s. The
number of data points was 512 and, thus, the measurement in-
terval was 51.2 s. Frequencies with a maximum peak correspond
to the fundamental component or harmonics of heartbeat and
respiration. The final output signal from the pneumatic system
is shown in Fig. 1 (upper figure).

B. Examinees

Table I shows a list of the 8 examinees and the number of clin-
ical trials. The number of initial trials to obtain the data required
for the mathematical sleep estimator and classifier models was
15 and the number of trials to obtain test data to evaluate the
method and system was 12. Therefore, the total number of test
trials was 27. Examinee M in Table I exhibits a normal sleep pat-
tern, whereas examinee N exhibits a slightly irregular pattern in
the sense that the examinee moves very frequently in overnight
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TABLE 1
LIST OF EXAMINEES
3 Height | Weight Number of trials
Examinee | Age | (o1 | [kg] | Tnitial | Test | Total
M 23 177 82 5 0 5
N 24 168 85 6 4 10
K 23 168 52 2 1 3
1 23 172 60 1 1 2
Is 23 171 63 0 3 3
Sk 23 169 62 0 2 2
Og 23 170 63 0 1 1
S 23 168 63 1 0 1
Subtotal and total s e

sleep. Three additional normal examinees K, I, S were employed
in order to obtain the initial data. Selections of these examinees,
despite a greater number of trials using examinees M and N,
cover a variety of sleep patterns. Some of the test data were ac-
quired from the same examinees used in the initial trials, but the
data were sampled on different days. Two other examinees par-
ticipated in several trials, but could not psychologically tolerate
the electrodes attached to the head, jaw and eyelids for the R-K
method. They (M, N, K, I, Is, Sk, Og, S) were all adult men
and were not examined for sleep disorders by a medical doctor,
but complained of no subjective symptoms. All examinees were
university students and their daily life patterns varied greatly, as
follows.

M)  Lives alone and regularly goes to sleep around 2 a.m.,
waking up around at 9 a.m.

N)  Lives with his family and goes to sleep around 2 a.m.,
waking up around noon. Sometimes feels tired during
the day.

K)  Lives alone and goes to sleep around 3 a.m., waking
up around | p.m. Sleeps as much as he wants.

I) Lives alone. Often goes to sleep about 3 a.m, and wakes
up about 10 a.m., but sleeping times are not always
regular.

Is)  Livesalone. Regularly goes to sleep around 1 a.m. and
wakes up at 8.30 a.m.

8k) Lives with his family and regularly goes to sleep
around 1 a.m., waking up at 8 a.m.

Og) Lives with his family. Usually goes to sleep around 1
a.m. and wakes up at 7.30 a.m., but this is not always
the case.

S)  Livesalone. Goes to sleep around 4 a.m. and wakes up
in the afternoon.

For the clinical tests, examinees went to bed around 11.30

p.m. All parameters were measured until the examinee woke up
the next morning.

IV. SLEEP ANALYSIS
A. Sleep Stage Transition Equation

Under assumptions Al) and A2), we consider problem P1).
First, we consider a mathematical model of sleep. Overnight

Fig. 3. Sleep stage transition diagram.

sleep passes from one sleep stage to another, which we define
as zg(t), z5(t), z4(t), 23(t), 22(t), x1(t), with the constraints

z6(t) + 25(t) + 2a(t) + 23(t) + 22(t) + 21 (1) = 1. (1)

These are stochastic variables with values from 0 to 1 that cor-
respond to the probability that sleep is in stage 6, 5, 4, 3, 2, or
1 at time £. The numerals 6 to 1 represent the nominal scale,
as defined above. In addition, a;; is the probability that sleep in
stage ¢ remains in the same stage at the next sampling and aj;
is the probability that sleep in stage j moves to stage ¢ at the
next sampling. Furthermore, the matrix A includes a;; and a;;
as element (i.1) and element (j. 1), respectively, and the vector
z(t) includes zy () as element k of the vector. The stochastic
behavior of sleep transition can then be described by the simul-
taneous difference equations

z(t+1) = Az(t), z(0)=[100000]". )

The initial condition means that the examinee is initially in the
Wake stage. Values of the elements in matrix A were estimated
from the results of 15 initial trials above and are given as fol-
lows:

0.938 0.005 0.070 0.008 0,000 0.003
0.018 0.908 0.075 0.029 0.000 0.000
0.005 0.004 0656 0008 0.001 0.000|
0.037 0.081 0.199 0905 0.200 0000 &
0.003 0.001 0.000 0045 0.684 0.233
0.000 0.001 0000 0.006 0116 0.764

Matrix A shows the average characteristics of sleep in 15 trials.
If we divide all sleeping times into several intervals and ob-
tain values of the elements for each interval, the matrices show
slightly different characteristics depending on these intervals.
The value of each element of matrix A is less sensitive to the
overall characteristics of (2).

B. Shannon Diagram of the Sleep Transition

Fig. 3 shows a Shannon diagram of sleep stage tran-
sition given by (2). The steady-state solution z(co0) =
[76(00)z5(00)4(c0)zg(00)Ta(00) 21 (20)]T of (2) is the
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TABLE 11
CLASSIFICATION OF HEART RATE AND SLEEP STAGE BY FREQUENCY

Change in sleep slage
Gradual change in sleep
Low Circadian rhythm stage throughout the night
Middle | Uliradian rhythm Non-REM/REM oscillation
Random change in hearl rate
High during REM sleep periods .

Frequency | Heart rate

average normalized length of each sleep stage and is obtained
as

zg(00) = 0.1, =z5(00) =0.15, 24(c0) =0.13
23(00) = 0.47, z5(c0) = 0.09. x,(c0) = 0.05. (4)

The normalized average length of each sleep stage in individuals
with no sleep disorders is reported [5] and these lengths were
found to be almost the same as those obtained with steady-state
values.

V. RELATIONSHIPS BETWEEN SLEEP STAGE AND CHANGE IN
HEART RATE AND BODY MOVEMENTS

A. Biorhythms

Here, we consider problem P2). It has been reported that the
changes in heart rate are measured as a part of a biological
rhythm, such as circadian rhythms with a period of 25 hr, or ul-
tradian rhythms with a period of 90 min, and as random changes,
such as those occurring during REM sleep [5]. Table 1l shows
the classification of rhythm frequencies.

Changes in heart rate and sleep stage are given by combining
these changes in each frequency range for each rhythm [2], [5],
as shown in Table 11, and are expressed as

h(t) = he(t) + hu(t) + he(t) + ha + na(2) (&)
8(t) = 81(t) + sm(t) + 50 + ns(t). (6)

Given that the changes in heart rate and sleep stage are given
by (5) and (6), respectively, we first examined the relationship
between h(t) and s(t). In the investigation to determine this
relationship, we employed the normalized time 7, as defined
above, because sleeping times of the examinees vary between
individuals and between different trials in the same examinee.

B. Relationships in Low-Frequency Range Biorhythm

Here, we consider the relationship between changes h.(t) in
heart rate in the circadian rhythm and sleep transition s, (t) in
the low-frequency range.

Sleeping time is about eight hours per day and is in a part of
the circadian rhythm period. Heart rate and sleep stage during
this time can be approximated to change linearly. During sleep,
sleep stage moves to stage 1 (Non-REM fourth) from stage 6
(Wake) in a short time and sleep gradually shallows from stage
| to stage 6. From the provisional assumption A3), we can de-
scribe the gradual changes in sleep stage from stage 1 to stage 6
as a continuous value and, thus, changes in sleep stage and heart
rate are given by linear functions. In the low-frequency range,

Heart rate
&

Heart rats

Fig. 4. Examples of average changes in heart rate. (I) Slight increase trend.
(D) Slight decrease trend.

TABLE 111
GRADIENT ¢, OF HEART RATES, AND I AND D CHARACTERISTICS OF
HEART RATE IN THE 15 TRAINING SAMPLES

~Exami Gradient [1/1 night] | Tvpe
M-1 6.5 1
E —4.2 D
M-3 0.15 |
M-4 6.8 1
M-5 —1.4 D
N-1 -19 D
N-2 —-9.6 D
N-3 —8.6 D
N-4 —11 D
N-5 ~15 D
N-6 -18 D
K-1 7.1 D
K-2 -14 D
1-1 -20 D
AR mihreld D

Elesp Btage

- o o= m N

0.2 0.4 0.6 0.8 1

Time

Fig. 5. Changes and trends in sleep stage throughout the night.

excluding the DC component, heart rate and sleep stage are de-
scribed by

he(T) = gueT - (17 — 0.5) @)
81(7) = g T - (T — 0.5). (8)

The gradient gy, can be easily estimated using the least square
method. Fig. 4 shows typical changes in heart rate in the low-
frequency range and the estimated linear equations. Increasing
(I) and/or decreasing (D) trend modes were observed. Fig. 4(1)
shows an example of an increasing trend mode and Fig. 4(D)
shows that of a decreasing trend mode. Table 11T shows a list
of examinees and whether they exhibited I or D trend modes.
Examinee M demonstrated an 1 trend. These gradients probably
change according to physical conditions and are not presumable.
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TABLE 1V
GRADIENT g.c OF SLEEP STAGES AND FREQUENCY OF WAKE IN
THE INITIAL SAMPLES

Examinee | Gradient [1/1 night] | Wakes
M-1 1.9 1
M-2 1.2 0
M-3 2:3 4
M-1 1.3 1
M-5 1.4 0
N-1 0.68 0
N-2 1.3 1
N-3 1.5 0
N-4 1.1 0
N-5 0.91 5
N-6 0.38 1]
K-1 1.2 2
K-2 0.6 3
I-1 1.3 0
SIS 186 0
26
i
Eis| _ -
i
£ os
" 0 s " i " . i
28 -20 18 ‘10 -8 o 1] 10
Heart rate frequomcy gradient

Fig. 6. Relationship between gradients for heart rate and sleep stage.

Fig. 5 shows a typical example of changes and trends in sleep
stage. The gradients of the sleep stages were obtained by the al-
gorithms as above. Table IV shows the gradient of sleep stage
and the frequency of waking, The gradient of sleep stage tran-
sitions ranges from 0.38 to 2.3. Fig. 6 shows the relationship
between heart rate gradients and sleep stage gradients. The cor-
relation coefficient of these gradient data is 0.64 and, thus, the
gradients of sleep stage gradient g.. and the heart rate gradient
gne are correlated. The trend changes in the sleep stages are in-
fluenced by the trend changes in heart rate, i.e., the circadian
rhythm. The sleep stage gradient g, can be given as a linear
function of the heart rate gradient, as follows:

85T = 3.7% 1072 x g,,. T+ 1.6. 9

Consequently, from (7), (8), and (9), we have a formula for es-
timation of sleep stage in the low-frequency range

81(1) = (3.7 x 1072 X ghe T+ 1.6) - (+ = 0.5).  (10)

C. Relationships in Middle Frequency Range Biorhythm

Here, we consider the relationship between changes in sleep
stage and heart rate in the middle frequency range both in the
ultradian rhythm and in Non-REM/REM oscillation. In order to
extract the heart rate and sleep stage components in the middle
frequency range, an FFT-based nonrecursive digital band filter
without phase shift was applied to both data. The period of
Non-REM/REM oscillation is from 26 to 135 min [5], which is
wide enough to include the ultradian rhythm. In the period (fre-
quency) range of 26 min (6.41 x 10~ Hz) to 135 min (1.23 x
10~ Hz), the fundamental components of both data are al-
ways included. Thus, the cutoff for the long period (low-fre-

Blosp Blage

Bourt ruie

Tilbersd
aleey slage

Filtased

Henrl rabe
-

i i 1 i i
L L (11} 150 nwe e o e e
Timeluinl

Fig.7. Sleep stage, changes in heart rate, filtered sleep stage and filtered heart
rate in middle (ultradian) frequency range for examinee M-2.

2t
15
1
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®r
05 r

1

Filterad Blonp stagn

286

-4 -3 2 e L} 1 2 3 4 L
Filtored Hourt rals

Fig. 8. Sleep stage versus heart rate in the middle (ultradian) frequency range.
The correlation between these is 0.86.

quency) was fixed at 135 min, but the cutoff for the short period
(high-frequency) was defined as the half of time between pe-
riods of peak heart rate. Fig. 7 shows the filtered data for heart
rate and sleep stage in the middle frequency range.

InFig. 7, the top row shows sleep stage data, the second shows
heart rate data, the third shows the band-pass filtered sleep stage
data and the bottom row shows the band-pass filtered heart rate
data. Sleep stage and heart rate in the middle frequency range
show similar trends. Fig. 8 shows the sleep stage versus heart
rate in the middle frequency range. The correlation coefficient
between these two data is 0.86 (very high). To find the relation-
ship between sleep stage and heart rate, we cited assumption
A3), which states that the nominal sleep stages 1 to 6 correspond
to numbers of a linear scale with the same interval. This was ini-
tially an assumption, but the nominal sleep stage demonstrated
a correlation with heart rate and, thus, these numbers may be
able to provide quantitative information regarding biodata.

Careful observation of Fig. 8 reveals that there is a somewhat
dynamic relationship between heart rate and sleep stage. There-
fore, to determine a closer relationship between these, we esti-
mated the dynamics of the relationship. The optimal relation-
ship with regard to minimum error and stability was estimated
by applying the least square method to the data from all training
examinees. Estimated sleep stage based on heart rate data in the
middle frequency is given by

$m(T) = 0.9963:, (T — 1) + 0.255h, (1) — 0.259h,(7 — 1).
(11)
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Fig. 9. High-pass filtered heart rate.

D. Relationships in High-Frequency Range Biorhythm

Changes in heart rate include high-frequency components
when sleep is in the REM stage. To detect the REM sleeping
time, a high-pass filter with a cutoff period of 3 min is applied
to changes in heart rate.

The top row in Fig. 9 shows sleep stage, the second shows
heart rate and the third shows the high-pass filtered heart rate
data. In the time interval when the high-frequency component
of heart rate h.(f) has a higher level, and heart rate in the ul-
tradian rhythm h,, (1) is at the high-frequency level, REM sleep
and sometimes waking occurs.

Time tg;—when REM sleep occurs—can, therefore, be de-
tected by

tri =t when[{maximum(h,(t))} and
{maximum(envelope(h,.(1)))}]. (12)

The envelope h.(t) is obtained by filtering absolute h. (%) values
using a low-pass filter with a cutoff period of 20 min. The av-
erage S, value (bias component) of the estimated sleep stage is
determined by the fact that it is in the REM stage at time ;.
shown as follows:

i=1

E. Estimation of Sleep Stage From Change in Heart Rate

Each component in (6), i.e., 31(%). 8 (t), and §,. is estimated
from the overnight change in heart rate data using (10), (11), and
(13), respectively. Consequently, estimating sleep stage exclu-
sively from heart rate data is possible using

8(1) = 81(1) + 8m(7) + Sa (14a)

while the normalized continuous sleep stage is estimated from

N 8(7) R,
Slo)= {maximum(3) — minimum(s)}’ (4n)

Fig. 10 shows typical results of sleep stage analysis using the
R-K method, and the estimated sleep stages using (14).

; e
FENECLIVEE.
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Timelminl

(h)

Fig. 10. Sleep stage determined by R-K method, and continuous sleep stage
estimated using heart rate. (a) Examinee M-2. (b) Examinee N-5.

Fig. 10(a) shows a typical normal sleep pattern, while (b) shows
irregular changes in sleep. Estimated stage is smooth and con-
tinuous but shows similar characteristics and oscillation as the
conventionally determined sleep stage. The smoothness is be-
cause the estimation equation neglects undefined fluctuations in
sleep stage ng(t).

F. Relationships Between Wake, REM Sleep, and Body
Movement

Heart rate fluctuates greatly in REM sleep and in the Wake
stage [5], [15], thus REM sleep or the Wake stage can easily
be detected. However, discriminating REM sleep from wake-
fulness using only heart rate data is difficult. Therefore, other
biosignal data is required. For this purpose, we employed body
movement, as measured by the pneumatic method.

The signal level of body movement is very high when com-
pared with that of heartbeats. The AGC control signal for each
sampling interval is proportional to the body movement. In order
to determine relationships between body movement and sleep
stage, we calculated the average value M (7) of body movement
at each sleep stage and then calculated the normalized average
value

M(T) T Mrnin

: 15
anx £F Mmin ( )

M' (1) =
From the normalized average value M'(7) and the average value
My of M(7), we can define an index of body movement.

M?
7l M(:) (16)

From all the data obtained in the clinical trials, we obtained
average indexes and standard deviations for each period of REM
and wakefulness as follows:

Wake stage Ly, = 1.1 +0.23
REM sleep stage Iy, = 0.53 £ 0.19. (17)
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Fig. 11. Sleep stage determined by R-K method (top) and continuous sleep
stage estimated by changes in heart rate (middle) and body movement data
(bottom).

If the lower range of Iy, in the wake stage 0.87(=1.1-0.23) is
used for this index, we can discriminate REM sleep from the
Wake state as follows:

If Iyo(7) > 0.87.sleep is in the Wake state.

If I.(7) < 0.87.sleep is in the REM state.  (18)

G. Sleep Analytical Results

In the above sections, we analyzed sleep itself, the relation-
ships between sleep stage and heart rate, and the relationship
between body movements in the Wake state and REM sleep for
the data obtained in our clinical trials. Mathematical models can
concisely express these results as follows:

1) Transition of sleep stage is given by the sleep state transi-

tion equations in (2) and (3).

2) Under the assumption A3), the relationship between sleep
stage and heart rate is given by (14) along with (10), (11),
and (13).

3) The relationship between the Wake and REM sleep states
and body movement is given by (18).

VI. DEVELOPMENT OF A SLEEP STAGE ESTIMATION METHOD
A. Problem Descriptions

Here, we consider the problem P3) and present a sleep stage
estimation method based on the analytical results above. The
continuous sleep stage in Fig. 10 estimated only by heart rate
under assumption A3), is not always accepted by medical
doctors. Most doctors are familiar with observing conventional
sleep stages with six categories and most sleep indexes are
defined by data obtained in these six stages. Furthermore, even
though the sleep stage data in Fig. 10 shows a close relationship
with the conventional sleep stage, some confusion between the
Wake and REM sleep stages remains.

Our estimation method will fully use the analytical results
above in order to provide more accurate sleep stage classifica-
tion defined by the six categories.

Fig. 11 shows the sleep stages as determined by the R-K
method (upper), those estimated by heart rate using (14)
(middle) and body movement data (lower). The problem is how
to clearly differentiate the upper sleep stages in Fig. 11 from the
middle and lower biodata obtained by the pneumatic method.
This problem is approached with regard to the following points.
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P3-1) Clustering the continuous sleep stages into six cate-
gories.

P3-2) Compensation of sleep stage by the full order observer
using the sleep transition state equation.

P3-3) Compensation for confusion between the Wake and
REM sleep states using body movement data.

B. Clustering Sleep Stages Into Six Categories

Subproblem P3-1) is considered. We first decided on the six
clusters of heart rate values corresponding to the six categories
of sleep. The histogram of estimated continuous sleep stages
H;.(k) is normalized as follows:

Hi(k)
S h :

From assumptions A1) and A2), the examinees experienced all
sleep stages and heart rates corresponding to sleep stages are
normally distributed. The normalized histogram in (19) is math-
ematically given by summation of the six normal distributed
functions weighted by the average normalized length of each
sleep stage x;(c0). The membership functions to cluster heart
rates into the six categories are given by minimizing the fol-
lowing equation with respect to m; and o;

his(k) = N

(19)

N

6
1
Z {h;s(k) - Ea:;(m)mm

k=0
k 2 1
X cx[)(—ﬂ) } — minimum. (20)

2:7;2

The coefficient z;(cc) are given in (4).

Minimization of (20) with respect to m; and o; can be car-
ried out using optimization algorithms. Here, we employed the
Newton-Raphson method. Because minimization of (20) is non-
linear, the calculation may not converge if inappropriate initial
values are used. As the initial values, we selected the normal-
ized average values and standard deviations of the heart rate for
each sleep stage, as follows:

mg = 0.62 + 0.16.
mgz = 0.65 £+ 0.10,
m4 = 0.51 +£0.13.
ma = 0.44 & 0.08,
mg = 0.35 £ 0.09,
my1 = 0.33£0.14,

(06 = 0.15 £ 0.08)
(05 = 0.18 4 0.05)
(04 = 0.13 4 0.10)
(03 = 0.20 % 0.03)
(02 = 0.17 + 0.06)

(o1 = 0.14 £0.07) 1)

Furthermore, the search regions used in the Newton-Raphson
method were restricted to the regions of standard deviation given
by the symbol “£” in (21).

The exponential parts in the six normal functions correspond
to the membership functions that show the degree of correlation
of each heart rate with each sleep stage

k—m;)?
Yi = (!xp{—(—ggi} et (D S (22)

The value y; ranging from O to 1 is the probability that contin-
uous sleep stage k is associated with sleep stage 7. For example,
if 4 = 1, continuous sleep stage k is correlated to sleep stage
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i with a probability of 1. Thus, the continuous sleep stage k(7)
at each sampling interval is converted into six degrees of corre-
lation to the six sleep stages. These degrees correspond to the
state variables defined in (2).

C. Compensation by the Full Order Observer Using the Sleep
Transition Equation

Subproblem P3-2) is now considered. Small fluctuations in
sleep stages are compensated for and adjusted using average
sleep stage transition data. Sleep stage transition data is sum-
marized using the sleep stage transition (2) and (3) (shown in
Fig. 3 as the Shannon diagram). Sleep stages logically estimated
above are continuously and finely adjusted. The full order ob-
server was employed for fine adjustment. For the state variable
equation given by (2), we used probability y; calculated by (22)
and compensated using the information in (18) for the six mea-
surements. Thus, sleep transition can be described as follows:

z(t +1) = Az(t)

y(t) = Ix(t). (23)

Let y5; (i = 1,2, .. .6) be the characteristic roots of the observer
and let the A;(i = 1.2....,6) be the characteristic roots of (2)
(the eigen values of the matrix A), and let

Ag — Iig 0
As — s

Tl (23)

0 Al — g
Then the full order observer to compensate for small fluctua-
tions is given by the following:

sk +1)=(A-K)-&(k)+ K -y(t). (25)

D. Compensation for Confusion of Wake and REM Stages

Subproblem P3-3) is now considered. From heart rate data
only, the Wake and REM stages were sometimes difficult to
differentiate. However, body movement data discriminates be-
tween these stages, based on (18). The Wake and REM stages
are, thus, confirmed using body movement data.

E. Sleep Stage Estimation Algorithm

The sleep stage estimation algorithm is summarized as fol-
lows.

Step 1) Obtain the continuous sleep stage from (14) and
body movement data using (16).
Obtain the histogram of heart rate from (19) and
obtain m; and o; by minimizing (20).
Obtain the membership function from (22) and
cluster heart rates into the six categories.
Compensate for small fluctuations using (25) based
on sleep stage transition data.
Compensate for the Wake and REM stages using
body movement data from (18).

In the above algorithm, steps 4) and 5) should be exchanged
when both heart rate and body movement are measured. Steps 3)

Step 2)
Step 3)
Step 4)

Step 5)
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Fig. 13.  Continuous sleep stage estimated using heart rate data and probability
of association with discrete sleep stage.

and 5) are logical judgments at each sampling point. Step 4) is a
continuous filtering stage based on the average data of overnight
sleep. Processing in Step 4) should, therefore, be applied to the
results of steps 3) and 5) obtained in incremental times. Here,
we selected these steps because in many investigations, only
heart rate is measured. Steps 1)-4) can be used in such cases and
Step 5 may be applied when body movement data is available.
In the algorithm, Wake and REM are discriminated by body
movements in the final step, in which body movement data is
primarily used to identify the Wake and REM stages.

F. Examples of Sleep Stage Clustering

Using the above algorithm, we will now estimate sleep
stage in one sample case. Continuous sleep stage and body
movement data are given in Fig. 11. In the following steps,
the data shown in Fig. 11 will be used to provide an example
of how this algorithm can be applied. In Step 2, the histogram
of the continuous sleep stage must be obtained. The upper
graph in Fig, 12 shows this histogram, and was estimated by
summation of the six normal distributed probability density
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Fig. 14.  Sleep stages. The first graph shows the sleep stages obtained by R-K
method; The second graph shows continuous stage; the thired graph shows
stage categorized by membership function; and the fourth graph shows stage
categorized by membership function after compensation by observer.

functions by minimizing (20). The middle graph shows the
six density functions weighted by the coefficients and the
lower graph shows the six membership functions for Step 3,
which classifies heart rate into the sleep stages and shows the
probability of how strongly each heart rate is associated with
sleep stage. Fig. 13 shows these probabilities. The upper part
shows continuous sleep stage, while the second through seventh
show the probabilities for stages 1-6, respectively. The sleep
stages at each sampling interval were classified to the stage
with maximum probability.

The six data series in Fig. 13 were considered to be measure-
ments of the observer. In Step 4, the full order observer is applied
to the measurements in Fig. 13 in order to compensate for small
fluctuations. Fig. 14 (top to bottom) shows the sleep stage using
the R-K method, the continuous sleep stage, the sleep stage clas-
sified using only the membership function and the sleep stage
classified and compensated for by the observer from the first
graph. The compensated stage by the observer is almost the
same as that determined using the membership classifier, but
between 360 and 400 min, a fluctuation is clearly eliminated.
However, some confusion between the Wake and REM sleep
stages remained.

In Step 5, the Wake and REM stages are clearly discrimi-
nated. Fig. 15 shows the final results processed using all five
steps in the algorithm. Fig. 15(a) shows the final results for data
set M-2 cited in the example of the initial trials. Fig. 15(b) shows
a different test example: one of the most difficult cases because
sleep transition was irregular and different from normal patterns.
Fig. 15(c) shows another example Is-1; one showing a normal
sleeping pattern.

The estimated sleep stage and the stages determined using the
R-K method show subjectively similar results. We then investi-
gated the accuracy of the sleep indexes obtained using the sleep
stages estimated above.

VII. EVALUATION OF ESTIMATED SLEEP STAGES

Here, we consider problem P4). We will prove the validity of
the sleep stage estimation method by comparing estimates with
the stages determined using the standard R-K method.
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A. Direct Comparisons

The six sleep stages classified using the R-K method
and those estimated by the proposed method were directly
compared. Sleep is frequently categorized into three stages
(Wakefulness, REM and Non-REM) by integrating the stages
with nominal values 4, 3, 2, 1 into one Non-REM stage. Fur-
ther, we directly compare sleep in the three categories. Table V
shows the percentage of agreements at each sampling time. The
results based on test data are listed in Table V(a) and those based
on initial data are listed in Table V(b) for comparison. The first
column (ALL) shows the agreement percentage over all six
categories. Among the 12 test data sets, the best agreement was
57.6% and the worst agreement was 26.1%, while the average
agreement was 42.8%. The result for initial data was 44.0%,
which differs only slightly from the test data. The second
column (Non-REM) shows the agreement for Non-REM sleep.
The best agreement for the test data was 95.8%, and the average
agreement was 82.6%. The result for initial data was 83.6%,
which again is only slightly different. The third column (Wake)
shows the agreement for the Wake stage. Among the 12 test
trials, there were cases of 100% agreement. The average rate
was for the test data 70.5% and the standard deviation was
35.8%. The result for initial data was 44.0%, which is lower
than the results for test data. The forth column (REM) shows
the agreement for the REM sleep stage. The average agreement
for the test data was 38.3% with a standard deviation of 20.3%.
The result for initial data was 47.5%. The agreement for the
Wake and REM stages include fluctuations that are due to
difficulties in differentiating between the Wake and REM sleep
stages. Furthermore, the wake times in these experiments were
short.
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TABLE V
AGREEMENT OF SLEEP STAGE ESTIMATION BETWEEN PROPOSED METHOD AND
R-K METHOD. (a) FOR THE TEST DATA. (b) FOR THE INITIAL DATA

Samples Ag [%]
No. ALL T Non-REM | Wake | REM
N-T 10.0 80.4 100.0 | 41.7
N-8 33.6 70.1 100.0 | 40.5
N-O 26.1 81.3 5.9 0.0
N-10 | 48.3 83.6 50.3 | 806
12 37.2 53.7 886 | 20.5
K3 387 81.1 100.0 | 31.7
Is-1 56.0 92.9 923 | 55.1
Is-2 43.4 83.3 100.0 | 57.6
Is-3 53.9 84.7 20.3 | 324
Sk-1 359 86.7 60.0 | 27.5
Sk-2 43.3 88.4 28.6 | 43.7
Og-1 57.6 95.8 1000 | 284
Mean | 4233 82.6 70.5 | 383
S. D. 0.6 11.2 35.8 | 20.3
(a)
Samples Agreement [%]
No. ALL T Non-REM | Wake | REM
N-1 34.6 88.0 286 | 44.0
N-2 43.1 85.9 209 | 51.9
N-3 52.7 84.7 9.1 82,1
N-4 52.5 84.8 16.7 y|ii72:7
N-5 33.3 69.5 385 | 60.6
N-6 44.8 82.4 25.0 | 70.2
M-1 133 86.1 100.0 | 37.1
M-2 60.4 97.4 50.0 | 44.3
M-3 50.7 92.5 43.1 | 33.8
M-1 34.8 96.4 17.1 | 34.9
M-5 62.2 90.6 100.0 | 66.7
I-1 27.0 57.0 32.7 | 0.0
K-1 328 71.8 625 | 474
K-2 40.4 63.4 92.5 | 30.0
51 16.9 93.3 22.2 | 37.0
Mean | 44.0 83.6 440 | 41.5
S.D. 104 | 125 31.0 | 208
(h)

B. Comparisons Between Sleep Indexes

Sleep indexes to evaluate the sleep quality and the skills of
the sleep analyst are as follows.

1) sleep latency (SL);

2) bed out latency (BOL);

3) sleep period time (SPT);

4) total sleep time (TST);

5) sleep effective index (SEI);

6) proportion of sleep stages (PSS).
Detail definitions of the indexes are summarized in the Ap-
pendix.

Table VI(a) shows the disagreements in the test data in the
above indexes for the estimates of sleep stage using the pro-
posed method and the sleep stages determined by the standard
method. Table VI(b) shows the disagreements in the initial data
for comparison. Among the indexes, SL and BOL included large
differences. This is due to the time interval of SL and BOL being
very short. The maximum difference in the trials is just several
minutes when it is converted into time. The average difference in
SPT in the test data was 2.9% with a standard deviation of 2.1%.
These are relatively small. The estimated sleep period times are
accurate and consistent. The total sleep time TST is defined by
subtracting SL and BOL from the total measurement time. The
total measurement times were relatively long. Thus, the relative
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differences in the TST are small. Furthermore, the SEI is the per-
centage of TST for the total measurement time and percentage
differences are same with those of TST. The average difference
by the test trials was 8.4% with a standard deviation of 11.8%.
The SEl is frequently used to evaluate sleep quality and, thus,
the fact that the index can be accurately estimated by the pro-
posed method demonstrates the effectiveness of this method for
estimating sleep quality.

Disagreements in the PSS, total times in each sleep stage as
a percentage of total sleep time are shown in the right column
of Table VI. From Wake to Non-REM sleep stage 4, differences
(standard deviations) by the test trials were 6.7% (7.6%), 9.4%
(6.0%), 1.4% (1.8%), 7.4% (8.0%), 6.5% (3.8%), and 7.7%
(6.7%), respectively. These are all within 10% and are relatively
small. The PSS is also an important index for evaluating sleep
itself. The differences in average differences in the test and ini-
tial data are minimal,

C. General Comments on Differences in Estimated Stage and
Sleep Indexes

From the results above, the proposed sleep stage estimation
method included large differences in estimating sleep transition
in short time intervals such as for the SL and BOL. However,
sleep indexes such as SPT, TST, SEI, and PSS, which are de-
fined by sleep stages over the whole night, are estimated accu-
rately with disagreements of less than 10%. Evaluation of the
accuracy might be different depending upon application. Based
on the above results, this method is not effective for classi-
fying sleep stages in a short period but is effective in classifying
sleep stages over the whole night. The R-K method, which is
the international standard, requires electrodes to be stuck to the
scalp, eyelids and jaw. This leads to substantial physical and
psychological stress in examinees, which certainly influences
sleep. The question of how accurately sleep stages can be es-
timated using data measured under such stress is not known,
On the other hand, the proposed sleep stage estimation method
described here includes overall different classifications of 10%
or less and is based on biodata that is collected through nonin-
vasive and unrestrained means. The reduction in stress induc-
tion is more conducive to accurate measurement of biodata and
can compensate for disagreement rates of 10%. By being less
invasive and less stressful than the R-K method, our method’s
sleep stage estimations may be more representative of the pa-
tient’s actual sleep behavior. The existence of the terminology,
such as “first night effect,” in the application of polygraph-based
approaches indicates that these approaches strongly influence
sleep itself, whereas the proposed pneumatic method does not.

The proposed method is sufficiently accurate to screen
sleeping at a patient’s home.

VIII. DISCUSSION
A. Limitations and Generalization

The examinees selected to determine the parameters in the
sleep estimation algorithm were all young adult males, Thus. the
algorithm in this paper is considered most applicable to such in-
dividuals. However the proposed sleep estimation algorithm is
composed of 1) sleep trend estimation by heart rate data in the
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TABLE VI
DISAGREEMENT IN SLEEP INDICES AND OVERALL DIFFERENT CLASSIFICATION OF SLEEP STAGE [%]. (a) FOR THE TEST DATA. (b) FOR THE INITIAL DATA

Samples PSS

No. SL BOL | SPT | TST | SEl "3 B 7 3 5 i
N-T TH.0 0.0 1.4 1.4 1.4 1.3 158 | 1.1 16.3 7.1 10.0
N-8 7.8 66.7 1.9 4.7 | 4.7 4.4 36 | 02| 42 5.7 2.5
N-0 T1.4 75.0 L7 5.2 5.2 51 | 223 | 57| 04 1.9 | 21.5
N-10 75.0 91.7 3.8 4.5 4.5 4.2 6.6 2.3 6.4 8.7 10.8
1-2 45.5 94.1 23 | 437 | BT || 278 41 [02]134] 78 P
K-3 93.8 90.0 7.9 124 | 124 110 | 123 | 1.b 5.2 9.5 28
Is-1 8.3 87.5 1.3 3.2 3.2 3.0 34 0.2 0.9 11.8 | 124
Is-2 90.5 50.0 4.8 5.5 5.4 5.2 4.3 0.0 1§ 8.2 10.2

Is-3 69.2 37.5 5.4 13.6 | 13.6 13 104 |07 | 63 | 111 | 28

Sk-1 84.6 | 100.0 | 2.2 2.2 2.2

Sk-2 0.0 85.7 1.2 3.4 3.4

21 135 | 05 | 27.7 | 1.2 | 156
3.2 44 | 00| 28 3.0 1.4

Og-1 60.0 12.5 0.9 0.9 0.9

0.9 115 | 43 | 456 1.5 0.2

Mean | 62.6 | 940 | 29 | 84 | 84

6.7 94 [ 14 ] 74 | 65 VT

5.D. 30.2 94.2 2.1 11.8 | 11.8 7.6 60 | 18] 80 | 3.8 6.7

Samples

No. SL | BOL | SPT | TST | SEI

=
bzl
{77

6 5 4 3 2 1

N-1 33.3 83.3 1.6 0.3 0.3

03 | 49 |05 131 | 10.0 | 17.0

N-2 83.3 25.0 1.9 | 25.7 | 26.7 || 23.6 | 149 | 0.4 | 3.1 6.4 1.2

N-3 75.0 | 909 | 3.1 08 | 0.8
16 [ 40 | 40

N4 | 667 | 800

0.8 81 | 04 | 02 2.1 5.5
3.7 43 | 08 | 73 5.7 7.3

N3 | 750 | 875 | 28 | 103|103 91 | 11304 | 12 | 33 | 179

N-6 300.0 | 800 1.3 1.3 1.1

1.0 9.7 1191159 | 29 2.5

M-1 80.0 96.2 83 9.6 9.6
M-2 14.3 | 375.0 | 4.6 5.6 5.4
M-3 90.9 20.0 2.4 1.9 1.9
M-4 41.7 80.0 1.8 4.3 4.3
M-5 T27 91.7 7.3 7.3 7.3

88 173 1 1.2 | 46 | 11.8 | 6.7
5.1 125 | 00 | 119 | 6.2 0.5
1.6 | 17.1 | 1.3 | 13.5 | 13.6 | 6.9
41 | 275 | 59 | 269 | 3.5 4.7
6.7 3.0 1 22| 25 | 139 | 129

I-1 27.0 0.0 2.3 6.7 6.7

4.8 4.1 0.0 | 3.0 3.9 1.5

K-1 59.1 45.5 35 [ 190 | 190 || 151 | 83 [ 07 | 1.3 | 125 | 124
K-2 50.5 80.0 108 | 169 | 16.9 || 11.8 | 109 | 1.4 | 9.1 21 10.2

S-1 250.0 | 85.7 0.9 1.7 L7

1.6 9.9 | 44 | 185 7.4 3.9

Mean 85.0 H8.1 3.6 7.7 7.6

65 [109 14T 88 7.0 7.5

S. D. 79.7 84.9 2.9 7.5 7.5

64 | 64 |17 | 77 | 43 | b7

Normal sale | in PSS

(b)

ds 10 the following stage,

6:Wake, 5:REM, 4:Non-REM1, 3:Non-REM2, 2:Non-REM3, 1:Non-REM1

low-frequency range, given by (9) and (10), 2) rhythm estima-
tion by heart rate data in the middle frequency range, given by
(11), 3) estimation of REM interval, 4) compensation or correc-
tion of sleep estimated by heart rate using body movement data,
given by (17) or (18), 5) compensation of sleep stage proba-
bility by the observer based on the sleep transition equation, and
6) classification of sleep stage by the self-learning membership
function. This structure of the sleep classifier is general. Only
6 parameters, in (9), (10), (11), and (18), depend on the sleep
characteristics of the examinee. The coefficients in A matrix are
less sensitive to sleep stage. The observer based on the matrix
plays the minor role of simple smoothing. The parameters in
(21) give the ranges to restrict the parameters in learning by the
Newton-Raphson method. These are not essential. Based on the
same structure, the proper sleep classifier for different classes of
examinee can be realized by tuning these six parameters using
data measured in a variety of subject samples. Some of these
parameters may be obtained by converting previously reported
data. In assumption A1), we cited that the examinee experiences
the five sleep stages and Wake. The number of sleep categories
is also one parameter. Thus, if sample data for a class of exam-
inees with less than five categories are available, the sleep clas-
sifier for this class of sleepers is realizable by tuning the above
parameters. :

B. Comparisons With the Conventional Methods

Here we compare the proposed method with conventional
methods other than the R-K method. A previous study [3] at-
tempted to clarify the relationship between heart rate and sleep
stage. However, the data given in that study is qualitative and is
not applicable to classification of sleep stage. Another report
[6] describes the relationship between gross body movement
and sleep stage. However, the variances in body movement re-
ported in the paper are too large to estimate sleep stage. Another
method [7] based on a static charge sensitive bed is noninva-
sive, but it classifies sleep stage into two categories “active” and
“quiet.” An approach [8] via an artificial neural network, which
determines sleep stage from body movement as measured by an
infrared sensor, classifies three stages including Wake. The re-
sults were not compared and evaluated. A method [16] using
cardiorespiratory data classifies infant sleep into three stages.
This method used the ECG and is, thus, invasive. However, the
data for infants reported in that study may be used to tune the
parameters in the present sleep classifier for application to in-
fants.

In comparison with the studies cited above, the proposed
sleep estimation algorithm has the advantage of classifying
sleep into six stages, and the structure of the classifier is explicit
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and, thus, if data from a certain class of patients are given,
the estimation algorithm can easily be applied to that class of
examinees.

IX. CONCLUSION

This paper describes a novel estimation method for classi-
fying sleep into six categories. This method uses heart rate and
body movement data measured noninvasively by the pneumatic
method for sleep stage estimation rather than using a polygraph,
which can lead to physical and psychological stress.

In order to develop this estimation method and to evaluate the
method, we carried out clinical trials over 27 nights to obtain
sleep data and to compare data obtained noninvasively to that
collected by conventional methods.

Analyzes of sleep itself and the relationships between biosig-
nals and sleep revealed the following.

1) Ovemight sleep behavior was mathematically modeled
using a sleep stage transition equation in the form of state
variable equation.

2) Under the assumption that sleep stage, classified into six
nominal stages, is linearly proportional to sleep depth, sleep
stage (depth) is given by linear functions of heart rate. Exper-
imental results show a good correlation between heart rate
in the middle frequency range and sleep stage (depth), indi-
cating that this assumption is confirmed by actual quantitative
data.

3) In the relationship described above, Wake and REM
sleep stages are sometimes confused. To discriminate be-
tween these, body movement data, measured by the same
pneumatic sensor, was effectively used.

While developing the estimation method, we determined the fol-
lowing.

4)  Sleep with given heart rate and body movement levels
can be categorized into one of six stages. An automatic
sleep clustering method is presented.

5)  Sleep indexes obtained from the estimated stage data
using the proposed method is not always accurate with
short-term sleep indexes, such as SLL and BOL, but
are accurate in for overall sleep events. Therefore, SPT,
TST, SEI, and PSS were estimated with disagreements
of less than 10%.

The proposed method is effective to overcome disagreements,
particularly when we consider the stress of the examinees and
the cost of measurements using the conventional R-K method.
The present method is effective for screening patients before
precise investigation using a polygraph in the hospital. The pro-
posed sleep estimation algorithm still includes disagreements.
However, the pneumatic method is able to measure heartbeat,
respiration, body movement, snoring, and coughing, all of
which are strongly related to sleep. Full use of these biomea-
surements will yield more accurate sleep stage estimates.
Furthermore, the pneumatic measurement method is not only
applicable to sleep medicine but also to various medical fields,
including ventilatory analysis, which is our future research
theme.
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Fig. 16. A pattern of sleep stage transition in overnight and sleep indexes.

APPENDIX |
SLEEP INDEXES

Fig. 16 shows a typical pattern of sleep stage transition in
overnight sleep, The sleep indexes are defined on the pattern as
follows,

Time In Bed (TIB): the total time when a person is in bed:;
Sleep Latency (SL): the time from awake to sleep in bed;
Bed Out Latency (BOL): the time from awake to getting
out of the bed;

* Sleep Period Time (SPT): total sleep period given by
SPT = TIB—-SL-BOL;

Total Sleep Time (TST): total sleep time given by TST =
TIB — total awaking times;

* Sleep Effective Index (SEI): percentage of TST for TIB
given by SEI = 100 (TST/TIB);

Proportion of Sleep Stages (PSS): percentage of total sleep
time of each stage for TIB.
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